

Introduction

- Listeners will categorize more tokens as real words along a word-nonword continuum (Ganong, 1980)
- Older adults show larger lexical effects compared to younger adults (Mattys & Scharenborg, 2014)

Word-nonword continuum

- Listeners compensate to altered auditory feedback by shifting their productions in the opposite direction of the feedback shift
- If feedback affects lexical status, the direction of lexical change affects magnitude of response (Bourguignon, Baum, & Shiller, 2014)
- Suggests lexical effect reflects implicit shifts to perceptual boundary

Research Question

What is the nature of the lexical bias in older adults? Is the increased lexical effect in older adults implicit or a post-hoc decision bias?

Method

Participants

- 27 Older adults (M_{age}=69.1)
- 33 Younger adults (M_{age}=20.7)

Stimuli

- 2 lexical change conditions: /ɛ/ targets where lexical status changes when shifted toward /1/
- 10 Words (ex., less, keg, death)
- 10 Nonwords (ex., kess, het, steck)

Procedure

- Altered feedback shifts perceived F1 down (towards /1/
- 200 trials
- Baseline: 50 trials
- Feedback shift: 100 trials
- After effect: 50 trials
- Counterbalanced order of conditions

References

Bourguignon, N. J., Baum, S. R., & Shiller, D. M. (2014). Lexical-perceptual integration influences sensorimotor adaptation in speech. Frontiers in Human Neuroscience, 8(April), 1–9. https://doi.org/10.3389/fnhum.2014.00208 Ganong, W. F. (1980). Phonetic categorization in auditory word perception. Journal of Experimental Psychology: Human Perception and Performance, 6(1), 110–125. Lametti, D. R., Rochet-Capellan, A., Neufeld, E., Shiller, D. M., & Ostry, D. J. (2014). Plasticity in the Human Speech Perception. Journal of Neuroscience, 34(31), 10339–10346. https://doi.org/10.1523/JNEUROSCI.0108-14.2014 Mattys, S. L., & Scharenborg, O. (2014). Phoneme categorization and discrimination in younger and older adults: A comparative analysis of perceptual, lexical, and attentional factors. Psychology and Aging, 29(1), 150–162. https://doi.org/10.1037/a0035387

Lexical effects in older adults' sensorimotor adaptation for speech

Sarah Colby^{1,4}, Douglas Shiller^{2,4}, Meghan Clayards^{1,3,4}, & Shari Baum^{1,4} ¹School of Communication Sciences & Disorders, McGill University; ²École d'orthophonie et d'audiologie, Université de Montréal; ³Department of Linguistics, McGill University; ⁴Centre for Research on Brain, Language, and Music, Montréal, Québec, Canada

Change in F1 frequency when producing real words versus nonwords under altered auditory feedback. Top panel: No lexical change (eg., head-hid, bep-bip). Bottom panel: Lexical change (e.g., kess-kiss, less-liss). From Bourguignon, Baum, & Shiller (2014).

Results

- Linear mixed-effects model investigating effect of age group and condition on proportion change from baseline F1 for trials during shift phase (Trials 51-150)
- As the shift phase progresses, older and younger adults compensate differently to the two conditions (Interaction between age, condition and trial: p=0.009)
- Older adults compensate more to words than nonwords, difference between conditions increases as shift phase progresses

Younger adults compensate more to nonwords than words