Audiological and Demographic Factors that Impact Phonetic Categorization by Cochlear Implant Users

Sarah Colby, Michael Seedorff, & Bob McMurray

Department of Psychological & Brain Sciences Department of Otolaryngology – Head and Neck Surgery University of Iowa

ARO Midwinter Meeting

Residual Hearing & Cls

- Wide variety of CI configurations
 - Electric-only: unilateral and bilateral
 - Acoustic + Electric: bimodal (contralateral residual hearing) or hybrid (ipsilateral residual hearing)
- Generally beneficial to preserve acoustic hearing (when possible)
 - Improvements to monosyllabic word recognition (Dorman, 2008)
 - Improved speech recognition in noise (Dorman & Gifford, 2010; Gantz et al., 2005)
- Two problems:
 - Evidence for an A+E benefit
 - What is the acoustic hearing providing?

What is the evidence for an A+E benefit?

- Studies often rely on within-subjects comparisons
 - A+E vs. E-only
 - Problem: A+E is the more familiar listening configurations
- Between subject comparisons in their normal hearing configurations are more rare.
 - Many demographic factors are confounded with device type (age, experience, etiology of deafness, etc).

What does residual acoustic hearing provide?

- Acoustic hearing offers a mix of cues:
 - Prosody
 - Segmentation
 - Pitch

- Suprasegmental information
- Does it actually provide cues for phoneme and word discrimination?
 - Measures that precisely target phoneme categorization could reveal a direct benefit.

What does residual acoustic hearing provide?

- McMurray, Farris-Trimble, Seedorff, & Rigler (2016) investigated speech categorization by Acoustic+Electric and Electric-only
 - Need to adapt to uncertainty to successfully recognize speech, categorization tasks can probe this

Speech categorization

Stop voicing: low-frequency voicing cue expected to be transmitted through acoustic hearing

/b/

Frication: high-frequency spectral cue expected to be transmitted through CI

ARO Midwinter Meeting

Adaptation to uncertainty

- Ton of variability
- Slope of responses
- Transform data so that boundary is the same across participants

Adaptation to ambiguity

CI users have shallower slope than NH No difference between A+E and E-only CI groups

ARO Midwinter Meeting

(McMurray, Farris-Trimble, Seedorff, & Rigler, 2016)

Adaptation to Ambiguity

Fricatives 1 ****************** 0.8 0.6 0.4 ······ Control - CI: Electric only 0.2 — CI: Acoustic+Electric boundary *********** -2 2 5 -3 -1 4 Fricative Place rStep ($\int \rightarrow s$)

> CI users have shallower slope than NH A+E CI group shallower than E-only CI group

> > ARO Midwinter Meeting

(McMurray, Farris-Trimble, Seedorff, & Rigler, 2016)

Adaptation to ambiguity

- Surprisingly, A+E performed poorer than E-only with fricative categorization (McMurray, Farris-Trimble, Seedorff, & Rigler, 2016)
 - Maybe A+E listeners don't always fully adapt to their CI
- Bimodal listeners with poorer residual hearing show a greater bimodal benefit (Mok et al., 2006)
 - Could be over-relying on their acoustic hearing

Current study

- How does residual acoustic hearing impact adaptation to phonetic ambiguity?
- Does ability to deal with acoustic ambiguity relate to clinical speech outcomes?

Current study

- Categorization of stop voicing & fricative continua
 - 5 continua x 8 steps x 5 repetition/step x 2 contrasts
 - bear-pear, self-shelf
- CNC word recognition, AzBio sentence recognition

Current study

- Large sample to capture variety of device configurations
 - Age, device experience

Group	N	Mean age (SD)	Mean device experience (SD) in years
Electric-only			
Unilateral	18	58.5 (11.2)	12.8 (9.1)
Bilateral	23	57.0 (13.2)	7.8 (5.2)
Acoustic + Electric			
Bimodal	43	60.4 (10.0)	3.4 (3.4)
Hybrid	25	62.5 (10.2)	2.0 (1.6)
Single-sided deafness (SSD)	27	54.3 (12.4)	2.9 (1.7)
Total Sample	136		

ARO Midwinter Meeting

Analyses

- Differences between hearing configurations
 - Add groups
 - Add model

Voicing Categorization

Acoustic+Electric CI users have steeper categorization than Electric-only

ARO Midwinter Meeting

Fricative categorization

SSD participants have steeper categorization

No broad group differences

ARO Midwinter Meeting

Analyses

• Differences between hearing configurations

• Demographic factors

Voicing Categorization

Older CI users have shallower stop-voicing categorization

ARO Midwinter Meeting

Fricative categorization

Electric-only CI users with longer device experience have steeper categorization

ARO Midwinter Meeting

Analyses

• Differences between hearing configurations

• Demographic factors

• Residual hearing

Residual acoustic hearing

Hybrid CI users with better PTA are worse at fricative categorization.

No effect of PTA for voicing categorization in any group.

Interim Summary

- A+E listeners have sharper stop voicing categorization, less clear for fricatives
- Older CI users have shallower stop voicing categorization
- Longer device experience sharpens fricative categorization
- Within Acoustic+Electric listeners, individuals with better residual hearing are worse at fricative categorization
 - Largely driven by participants with ipsilateral residual hearing

Relationship to speech outcomes

- Does sensitivity to phonetic ambiguity relate to clinical assessments of word and sentence recognition?
- Calculated slope for each participant and each contrast (voicing & frication) MAYBE A TINY FIGURE?
- Test accuracy ~ categorization slope + hearing configuration

Word recognition

Electric-only users with steeper categorization slopes have better word recognition ANIMATE ME!!!!!

Sentence recognition

Electric-only CI users with steeper categorization slope have better sentence recognition scores

Sentence recognition in noise

CI users with steeper categorization slope have better sentence recognition in noise scores

Speech categorization & outcomes

- Why the differing results in A+E and E-only listeners?
- A shallow slope isn't necessarily a bad thing
 - Gradiency is thought to preserve flexibility (Kapnoula et al., 2021; McMurray et al., 2009)
 - Might be adaptive for A+E listeners
- In this paradigm, shallow slope could be gradient categorization or noisy
 - Need something that can capture continuous responses: Visual Analogue
 Scale

Summary

- Residual acoustic hearing is beneficial for categorizing voicing, but not frication
 - A+E listeners might not be fully adapting to their implant, and thus not gaining as much benefit
 - Listeners with better residual hearing may be over-relying on their acoustic hearing and are missing out on import cues to frication
- Age and device experience matter for perceiving different contrasts
 - Age attenuates voicing categorization
 - Device experience impacts fricative categorization
- Speech categorization is related to clinical outcomes
 - In noise, listeners with sharper categorization perform better
 - Need continuous measure to disentangle gradiency vs. noise

Thank you!

Thanks to members of MAClab/CI language lab Ashley Farris-Trimble Sarah Plock Tyler Ellis Kristin Rooff

UIHC Otolaryngology Camille Dunn Bruce Gantz Marlan Hansen